翻訳と辞書
Words near each other
・ Quashed
・ Quashnet River
・ Quashquame
・ Quasi
・ Quasi alliance
・ Quasi at the Quackadero
・ Quasi corporation
・ Quasi Delay Insensitive
・ Quasi Fermi level
・ Quasi in rem jurisdiction
・ Quasi Object
・ Quasi Self Boot 93–96
・ Quasi Universal Intergalactic Denomination
・ Quasi-algebraically closed field
・ Quasi-analog signal
Quasi-analytic function
・ Quasi-arithmetic mean
・ Quasi-bialgebra
・ Quasi-biennial oscillation
・ Quasi-bipartite graph
・ Quasi-birth–death process
・ Quasi-category
・ Quasi-commutative property
・ Quasi-compact morphism
・ Quasi-constitutionality
・ Quasi-continuous function
・ Quasi-contract
・ Quasi-criminal
・ Quasi-crystals (supramolecular)
・ Quasi-delict


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Quasi-analytic function : ウィキペディア英語版
Quasi-analytic function
In mathematics, a quasi-analytic class of functions is a generalization of the class of real analytic functions based upon the following fact. If ''f'' is an analytic function on an interval () ⊂ R, and at some point ''f'' and all of its derivatives are zero, then ''f'' is identically zero on all of (). Quasi-analytic classes are broader classes of functions for which this statement still holds true.
==Definitions==

Let M=\_^\infty be a sequence of positive real numbers. Then we define the class of functions ''C''''M''(()) to be those ''f'' ∈ ''C''(()) which satisfy
:\left |\frac(x) \right | \leq A^ M_k
for all ''x'' ∈ (), some constant ''A'', and all non-negative integers ''k''. If ''M''''k'' = ''k''! this is exactly the class of real analytic functions on (). The class ''C''''M''(()) is said to be ''quasi-analytic'' if whenever ''f'' ∈ ''C''''M''(()) and
:\frac(x) = 0
for some point ''x'' ∈ () and all ''k'', ''f'' is identically equal to zero.
A function ''f'' is called a ''quasi-analytic function'' if ''f'' is in some quasi-analytic class.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Quasi-analytic function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.